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Abstract-An internal-variable model of rate-independent plastic behavior, based on loading
unloading irreversibility, is proposed. The model is compatible with thermodynamics and
assumes no yield or loading function, stability p.ostulate or specific nature of the internal
variables. It is shown that current theories of plasticity are restricted forms of the proposed
theory.

1. INTRODUCTION

The purpose of this note is to expose a theory of plasticity which is an outgrowth of some
recent work ofmine[l, 2] on the thermodynamics ofmaterials illtwhich irreversible processes
are characterized by internal variables. The bulk of the literature on such materials[3-8]
deals with internal variables that are governed by local rate equations of the form

q~ =fistate), IX = 1, '" ,n, (1)

where n is the number of internal variables, and the state is given locally, for example,
by the temperature' e, the Cauchy-Green deformation tensor C, and the n-vector q whose
components are the internal variables qrz (which may be scalars or components of tensors
that are 'unchanged by rigid·body motion). Clearly the solutions of equation (1) are not
invariant under time reversal. This kind of irreversibility, typical of rate processes,
characterizes viscoelastic and viscoplastic materials, the difference between these two types
of material behavior residing in the structure of the functions f~ .

Rate-independent plastic flow, on the other hand, is characterized by a different kind of
irreversibility. It may be called a one-way process: it occurs when the external process
(mechanical work and heating) goes in some direction (called loading) but not when it
is reversed (unloading). If the state of external process is defined locally by C and e, then we
may assume the existence of a tensor A, a scalar a, and an n-vector r, all functions of the
state variables C, eand q, such that the loading rate ¢ is given by

¢ = treAt) + ae
and the internal variables are governed by

q = r<¢)

(2)

(3)

where <u) = uH(u), H(u) being the Heaviside step function.
Alternatively we may take as external variables the temperature eand the Piola-Kirchhoff

stress tensor P, and assume the existence of B, band r, respectively tensor, scalar and n·
vector functions of P, eand q such that
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¢ = tr(BP) + b(} (4)

and q is governed in form by equation (3) as before.
The proposed model of rate-independent plasticity is embodied in either equations (2)

and (3) or (3) and (4). It does not require (but does not preclude) the existence of yield or
loading surfaces, or of stability postulates, and it leaves the number and nature of the
internal variables unspecified. The relationship between these traditional concepts and the
present model will be explored in section 3. Since the model is one of irreversible behavior,
it must first be examined for compatibility with the second law of thermodynamics.

2. COMPATIBILITY WITH THE SECOND LAW

The second law will be expressed under the guise of the material local form ofthe Clausius
Duhem inequality[9]. Since the functions characterizing plastic flow, as defined in the
preceding section, are independent of temperature gradient we may limit the inequality to
its form for vanishing temperature gradient. The existence of entropy and Helmholtz free
energy per unit mass, denoted respectively by 11 and t/!, as functions of C, () and q will be
assumed on the grounds that at any point in state space there are neighboring points that
can be reached by unloading, that is, a process in which only C and () vary; hence any state
is one of constrained equilibrium.

With Po denoting mass density in the reference configuration and y irreversible entropy
production per unit mass, we have

- Po(l/J + I1 fJ ) + ! tr(PC) = Po ()y ~ o. (5)

With t/! a C' function, this becomes, upon application of the chain rule and substitution of
equations (2) and (3),

(6)

The inequality is satisfied for all ¢ if and only ift

provided

and

at/!
-r <0a IX-qIX

(7)

(8)

(9)

t See Appendix for necessity proof.
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since the inequality (6) then reduces to
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(lOa)

(10b)

al/J
Oy = A:;- r" cf> ~ 0, (cf> ~ 0)

uq"

= -(1-A) al/J r"cf>~O (cf»0).
aq"

It is significant that, unlike the models studied by Coleman and his collaborators[6, 9-11],
for the present model the Clausius- Duhem inequality is not sufficient to determine con
stitutive equations for stress and entropy. To eliminate the indeterminacy presented by the
parameter Awe must additionally argue that the unloading process is quasi-reversible, that is,
y = 0 when cf> < O. Then, by (10a), we have A = 0, and equations (7) may be replaced by the
classical relations

al/J
'1 = - 00 '

al/J al/J
P = 2po ac = Po aE'

where E == t(C - n, while the irreversible entropy production is given by

(11)

(12)
al/J

Oy = -:;- r,,<cf»,
uq"

restricted to be non-negative by the inequality (8).
Analogous considerations apply to the complementary model given by equations (3)

and (4), with P, 0 and q as state variables. The complementary free energy per unit mass, X,
may be defined by the Legendre transformation

We then have

and

1
X = - tr(PE) - l/J.

Po

aX
E = Po ap'

ax
'1 = 00 '

(13)

(14)

(15).
3. RELATIONSHIP TO OTHER THEORIES OF PLASTICITY

Among the salient ad hoc assumptions which are features of current theories of plasticity
are the following:

(1) The existence of a yield criterion, given by a yield function, say F(p, 0, q), such that
no plastic flow occurs when F < 0, is assumed. In the context of the present model a yield
function may be incorporated into the structure of the r", i.e. r = 0 for F < O.
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(2) The existence of loading surfaces, given by G(P, 8, q) = 0 such that the loading
rate is given by

in other words, the existence of a function G, such that

(16)

aG
B=-,ap

b = aG
a8

(17)

is assumed. G mayor may not coincide with F. The former view is the classical one, as
formulated, for example, by Green and Naghdi[12], while the latter view was proposed
originally by Melan[13] and more recently by Eisenberg and Phillips[14].

(3) The internal-variable vector is usually assumed to consist of the plastic strain tensor EP
and the hardening parameter K[12], although, in place of the former, such other symmetric
second-rank tensors as the contracted tearing curvature tensor of Kondo[15] or the dis
location loop density of Kr6ner[16] may represent more closely the internal processes.
EP arises naturally if the strain-stress equation (l4a) has the property

since then

(18)

E = Ee(P, 8) + EP(q) (19)

(Equation (18) means that the thermoelastic moduli in terms of P and E are independent of
plastic deformation.) If n ~ 6, then the components of EP may be used as six of the internal
variables (otherwise they will be subject to constraints).

Since by virtue of equation (14)

equation (19) implies

aEi/ aEk1
e

aP
k1

= aPij ,

necessitating the existence of a function Xe(P, 8) such that

aXe
Ee=po--ap

(hence both Ee and EP are symmetric), and X is given by

1
X= Xe + - tr(PEP) + XP(8, q).

Po

If furthermore the specific heat (at constant P and q), given by

a2 X
C = 8 a82 '

(20)

(21)

(22)

(23)

(24)
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is also assumed independent of q, then xP is at most linear in e, and X is given by
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(25)

where eP is the additional internal energy (strain energy) and 1]P is the configurational
entropy due to plastic deformation [1 7]. Since the Clausius- Duhem inequality (15), with X
given by (25), reduces to

(26)

it is clear that such an entropy (increasing with plastic deformation) must exist if the
Bauschinger effect (entailing the possibility that tr PEP < 0) is to be compatible with the
second law of thermodynamics.

With q given by {EP, K}, r is given by, say, {M, m}. Two definitions of K are common:
the first as the plastic work, so that

implying

and the second as given by

so that

m = tr(PM),

(27)

(28)

(29)

(30)

Note that Green & Naghdi[l2] assume K linear (and not merely homogeneous of the first
degree) in EP, precluding the definition (29).

(4) Drucker's postulate of material stability[18] takes, in terms of P and E, the form

tr PEP ~ O. (31)

In conjunction with the concepts of yield and loading surfaces, this postulate has been
used to prove the convexity of these surfaces and the normality of EP to the loading surface.
However, the postulate itself is independent of the existence of any such surfaces and even
of the plastic strain EP, since a plastic strain rate EP may always be defined as

. DE
EP = -4a

Dqa

= M<¢), (32)

where

DE
M=a ra . (33)

qa

IJSS Vul. 10 NIl.3 (
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Taking (31) as valid isothermally, we have

tr(MP)tr(BP) > 0,

which requires, in order to be valid for all P,

M=JlB

where Jl > 0. The" normality rule" follows if B is given by (l7a).
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APPENDIX-PROOF OF NECESSITY OF EQUATIONS (7)

Let {_l_ p _ oljJ , _ (Yf + oljJe )}, {A, a}, and {C, O} be denoted by the 7-vectors U, v and w,
2po OC 0

respectively, and ra oljJjoqa by -k. With this notation the Clausius-Duhem inequality may
be written as

U . w + k(v . w) 2 0,

and equations (7) are equivalent to the assertion that

U = -Jekv,

(AI)

(A2)

that is, U is parallel to v. To prove that (AI) implies (A2) we assume the contrary of the
latter, that is, we suppose that U also has a component normal to v:
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U = -Akv + z,
v' z= O.

Now suppose w = CZ, where C may be any real number. (AI) and (A3) together imply

CZ· Z > o.
For (A4) to hold for all real c, Z must vanish, that is, (A2) is necessary.

AficTpaKT - Ha OCHOBe npo~ecca Heo6paTHMocTH Harpy3KH H paJrpy3KH, npe,lUIOJIaraeTCli

MOp;eJIh nJIaCTH'l.ecKoro nOBep;eHHlI, He3aBHClIIII;OrO OT CKOpOCTH, KOTOpali nOJI3yeTcli

BHyTpeHHhIMH nepeMeHHhIMH. MOp;eJIh COBMecTHMa C TepMOP;HHaMHKoi!: H He npe,lUIOJIaraeT

<lJYHK~HH Te'leHHlI HJIH Harpy3KH, nocTyJIaTa YCTOH'lHBOCTH HJIH cne~H<lJH'l.eCKoi!: npHpop;hI

BHYTpeHHhIX nepeMeHHhIX. YKa3aHO, 'ITO TeKyIII;He TeopHH nJIaCTH'iHOCTH OKaJhIBalOTCJI

OrpaHH'IeHHhIMH <lJopMaMH npep;JIaraeMoil: TeopHH.
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(A3)

(A4)


